Uncertainty

Objective: Promote a broad understanding of practical approaches to effectively inform decision-makers faced with uncertainty underpinning baseline assumptions in travel forecasting and planning

Need: Volunteers to contribute to each of the challenge areas - please join the aep50 Uncertainty google group to connect and learn more.

Motivation

AEP50 stakeholder comments highlighted the need and challenge to practically engage in uncertainty modeling. Resources and research are becoming increasingly available, but there is much work done to help bridge the gap between research and practice. At the core of this initiative is the question: how reasonable is it to produce a single best-guess 25 year forecast to inform the transportation planning practice? To stay useful (and relevant) to the public process, our tools and methods need to evolve.

Scope

The decision making under deep uncertainty (DMDU) approach developed in other industries presents a model for how travel forecasting and planning can shift from a “predict-then-act” approach that optimizes against a “best-guess” future to an approach that stress tests a plan in order to minimize regret across possible future scenarios. Making this shift would represent a fundamental change in mindset for the industry with far reaching dependencies on quantitative analysis tools and approaches as well as regulation, policy structure, and public engagement. 

Through this initiative, AEP50 will advance the state of the practice in the specification, development, and application of appropriate quantitative tools for DMDU. Of course, repurposing, reimagining, and renovating our models and approaches to support a DMDU type approach is a necessary, but not sufficient condition. Therefore, success of this initiative is dependent on and should be connected to other committees that are advancing planning under uncertainty from their perspective (e.g. regulation, policy, planning process).

This work will aim to build on FHWA’s TMIP work to promote planning and modeling with uncertainty as compiled in the recently published Transportation Planning for Uncertain Times report.  

Organization by Key Challenge Area

To help get our arms around the topic and allow contributors to focus on their area of interest and expertise, the uncertainty initiative is organized into four key challenge areas:

Identifying uncertainty areas and ranges

This challenge area will help answer the question “where do we begin?”. Most transportation planners and modelers won’t take much convincing that there is uncertainty in every aspect of a forecast. However, depending on what is to be evaluated and how, some uncertainties are more relevant than others.  

Planners and modelers need guidance on how to home in on the relevant uncertainties based on the projects and policies under evaluation and how they will be measured. At the same time, we need to guard against an insufficient exploration of assumptions. Modelers will need strategies on how to push their imaginations in defining scenarios, including cases where policies and projects fail, to discover and explore the ‘worst-case’ scenario conditions. This could even include the exploration of ‘black swan’ scenarios to move thinking beyond the constraints of existing tools. 

Uncertainties that can be modeled will be translated into ranges for analysis. At the least, these ranges are a set of bounds or cases to be tested. If the uncertainties are well-characterized, as opposed to deep, a probability distribution could also be defined to support risk assessment outputs (e.g. confidence intervals, probable vs. possible outcomes). 

This challenge area will also consider how the probabilities and ranges can and should be updated as new information becomes available.  The new information could be a planned major investment from one agency (e.g. a new bridge/tunnel, transit line, toll road, etc.) that would have a cascading effect on the plans of other agencies and land use.  In effect, the practice could be a Bayesian approach to setting and refining the uncertainty distributions along with an exploratory approach.

Potential Contributions

References

Exploring uncertainty space with quantitative analysis

The historic focus on improving accuracy in our models as predictive tools has had implications on their ability to operate in an exploratory manner. Longer run times and a manual process to setup, run and analyze results make running several experiments daunting; let alone the challenge to run a relatively small exploratory sample of 50 to 100 experiments. This area will examine the practical obstacles to implementation (computational power, software compatibility, archive capacity, etc.).

TMIP-EMAT was built to facilitate using large travel demand models across an uncertainty space, but requires some investment to integrate and use effectively. VisionEval is a strategic tool platform that can be set up and run with lower overhead than a traditional travel demand model.   These tools are used in various ways (independently, in concert, as part of a structured exploration and narrowing of scenarios) therefore a cohesive compilation and reference for new and existing users would be valuable. 

Potential Contributions

References

Visualizing and analyzing results

After going through all the effort of defining uncertainty and conducting many model runs, we need new approaches to support analysis and call attention to key outcomes

It is important to counter the temptation to generate an aggregate single value outcome thus: masking decisions around prioritization of impacts (that may vary by stakeholder groups); imposing an assessment on the risk of each impact; and asserting the relationship between impacts. 

This is an area where equity concerns and considerations need to be emphasized.  Within an equity population, groups may fare differently across the range of uncertainties. There is useful information in examining the shape of the distribution of outcomes, identifying the tipping points, and describing best and worst case scenarios

Potential Contributions

References

Translating results into useful inputs to a planning process

A key question of this challenge area will be how to demonstrate the value and feasibility of this approach for planning agencies and regulators. 

The FHWA Transportation Planning for Uncertain Times report highlights several challenges and pitfalls to implementing a DMDU approach within MPO organizations. This area will focus on the organizational challenges specific to quantitative analysis while coordinating with the relevant TRB committees focused on policy, regulation and planning processes. The FHWA report makes a compelling case for how a “Deliberation with Analysis” mechanism not only improves plans, but also builds legitimacy in modeling practices. One way legitimacy can be built is by facilitating an interaction between planners and models whereby the story from the model is developed out of an iteration of exploration and refinement across uncertainty dimensions and boundaries.  

This area may also engage in a survey of how planning agencies are considering other forecast horizons to manage uncertainty and what decisions and considerations work best in a Long Range Transportation Plan (LRTP) context. 

Potential Contributions

References


References

TMIP Webinars on TMIP-EMAT, DMDU, Forecasting Uncertainty